4.6 Article

Molecular genetic analysis of 16 XP-C patients from Germany: environmental factors predominately contribute to phenotype variations

Journal

EXPERIMENTAL DERMATOLOGY
Volume 22, Issue 1, Pages 24-29

Publisher

WILEY
DOI: 10.1111/exd.12052

Keywords

nucleotide excision repair; skin cancer; ultraviolet radiation; xeroderma pigmentosum; XPC

Categories

Funding

  1. German Cancer Aid (Deutsche Krebshilfe e.V.) [108616]
  2. Deutsche Forschungsgemeinschaft DFG [GRK 1034]
  3. Research Program, Faculty of Medicine, Georg-August-University Gottingen

Ask authors/readers for more resources

Patients belonging to xeroderma pigmentosum (XP) complementation group C comprise one-third of all XP patients. Only four major reports compiled larger groups of XP-C patients from southern Europe (12 pts), North America (16 pts) and Africa (14 and 56 pts) as well as their genetic background (46 XPC mutations). We identified 16 XP-C patients from Germany. Interestingly, only five patients exhibited severe sun sensitivity. The mean age of XP diagnosis was 9.4 years, and the median age of the first skin cancer was 7 years. Neurological symptoms were absent in all but two patients. Primary fibroblasts from all 16 patients showed reduced post-UV cell survival (mean: 50% vs 93% in normal cells) and reduced reactivation of an UV-treated luciferase reporter gene (mean: 6.4% vs 30.7% in normal cells). XPC mRNA expression was also greatly reduced compared with normal cells (mean: 14.3%; range 8.325.7%) except in XP47MA (274.1%). All patients carried homozygous XPC mutations. Four mutations have been described previously: c.1747_1748delTG (found in 4/16), c.567 C>T (4/16), c.1839 C>T (1/16) and a complex insertion/deletion mutation in exon 9 (1/16). The novel frameshift mutations c.446_447delAG (2/16), c.1525insA (1/16) and c.2271delC (1/16) lead to truncated XPC proteins as does the novel nonsense mutation c.843C>T (1/16). XP47MA carries an interesting mutation (c.2538_2540delATC; p.Ile812del) resulting in an in-frame single amino acid deletion. This mutation results in a classical XP phenotype, a non-functional XPC protein, but elevated XPC mRNA expression. Our study indicates that extrinsic factors may contribute to XP-C symptom severity due to nonsense-mediated message decay.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available