4.7 Article

Effects of combined mechanical stimulation on the proliferation and differentiation of pre-osteoblasts

Journal

EXPERIMENTAL AND MOLECULAR MEDICINE
Volume 43, Issue 6, Pages 367-373

Publisher

KOREAN SOC MED BIOCHEMISTRY MOLECULAR BIOLOGY
DOI: 10.3858/emm.2011.43.6.040

Keywords

bioreactors; cell differentiation; physical stimulation; tissue engineering; ultrasound

Funding

  1. Korean Government (MEST) [2010-0018294]
  2. Ministry of Education, Science and Technology [R31-2008-000-10105-0]

Ask authors/readers for more resources

We observed how combined mechanical stimuli affect the proliferation and differentiation of pre-osteoblasts. For this research, a bioreactor system was developed that can simultaneously stimulate cells with cyclic strain and ultrasound, each of which is known to effectively stimulate bone tissue regeneration. MC3T3-E1 pre-osteoblasts were chosen for bone tissue engineering due to their osteoblast-like characteristics. 3-D scaffolds were fabricated with polycaprolactone and poly-L-lactic acid using the salt leaching method. The cells were stimulated by the bioreactor with cyclic strain and ultrasound. The bioreactor was set at a frequency of 1.0 Hz and 10 % strain for cyclic strain and 1.0 MHz and 30 mW/cm(2) for ultrasound. Three experimental groups (ultrasound, cyclic strain, and combined stimulation) and a control group were examined. Each group was stimulated for 20 min/day. Mechanical stimuli did not affect MC3T3-E1 cell proliferation significantly up to 10 days when measured with the cell counting kit-8. However, gene expression analysis of collagen type-I, osteocalcin, RUNX2, and osterix revealed that the combined mechanical stimulation accelerated the matrix maturation of MC3T3-E1 cells. These results indicate that the combined mechanical stimulation can enhance the differentiation of pre-osteoblasts more efficiently than simple stimuli, in spite of no effect on cell proliferation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available