4.5 Article

Characterization of Novel Fusaricidins Produced by Paenibacillus polymyxa-M1 Using MALDI-TOF Mass Spectrometry

Journal

Publisher

SPRINGER
DOI: 10.1007/s13361-015-1130-1

Keywords

Paenibacillus polymyxa-M1; Fusaricidins; MALDI-TOF MS; MALDI-LIFT-TOF/TOF MS; Mass spectrometric structure analysis

Funding

  1. European's Seventh Framework Programme (FP) [312117]

Ask authors/readers for more resources

Paenibacillus polymyxa-M1 is a potent producer of bioactive compounds, such as lipopeptides, polyketides, and lantibiotics of biotechnological and medical interest. Genome sequencing revealed nine gene clusters for nonribosomal biosynthesis of such agents. Here we report on the investigation of the fusaricidins, a complex of cyclic lipopeptides containing 15-guanidino-3-hydroxypentadecanoic acid (GHPD) as fatty acid component by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). More than 20 variants of these compounds were detected and characterized in detail. Mass spectrometric sequence analysis was performed by MALDI-LIFT-TOF/TOF fragment analysis. The obtained product ion spectra show a specific processing in the fatty acid part. GHPD is cleaved between the alpha- and -position yielding two fragments a and b, one bearing the end-standing guanidine group and another one comprising the residual two C-atoms of GHPD with the attached peptide moiety. The complete sequence of all fusaricidins was derived from sets of b(n)- and y(n)-ions. The fusaricidin complex can be divided into four lipopeptide families, three of them showing variations of the amino acid in position 3, Val or Ile for the first and Tyr or Phe for families 2 and 3, respectively. A collection of novel fusaricidins was detected differing from those of families 1-3 by an additional residue of 71 Da (family 4). LIFT-TOF/TOF fragment spectra of these species imply that in their peptide moiety, an Ala-residue is attached by an ester bond to the free hydroxyl group of Thr(4). More than 10 novel fusaricidins were characterized mass spectrometrically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available