4.6 Article

Predicting bird song from space

Journal

EVOLUTIONARY APPLICATIONS
Volume 6, Issue 6, Pages 865-874

Publisher

WILEY
DOI: 10.1111/eva.12072

Keywords

anthropogenic effects; avian song; behavioral ecology; random forests; remote sensing; reproductive isolation; spatial heterogeneity

Funding

  1. National Geographic Society
  2. NERC [GR3/85519A9]
  3. Veneklasen Research Foundation
  4. Royal Society [571310.V703]
  5. NSF [BSR 88-17336, IRCEB9977072]
  6. NASA [IDS/03-0169-0347]

Ask authors/readers for more resources

Environmentally imposed selection pressures are well known to shape animal signals. Changes in these signals can result in recognition mismatches between individuals living in different habitats, leading to reproductive divergence and speciation. For example, numerous studies have shown that differences in avian song may be a potent prezygotic isolating mechanism. Typically, however, detailed studies of environmental pressures on variation in animal behavior have been conducted only at small spatial scales. Here, we use remote-sensing data to predict animal behavior, in this case, bird song, across vast spatial scales. We use remotely sensed data to predict the song characteristics of the little greenbul (Andropadus virens), a widely distributed African passerine, found across secondary and mature rainforest habitats and the rainforest-savanna ecotone. Satellite data that captured ecosystem structure and function explained up to 66% of the variation in song characteristics. Song differences observed across habitats, including those between human-altered and mature rainforest, have the potential to lead to reproductive divergence, and highlight the impacts that both natural and anthropogenic change may have on natural populations. Our approach offers a novel means to examine the ecological correlates of animal behavior across large geographic areas with potential applications to both evolutionary and conservation biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available