4.6 Review

Genomic sister-disorders of neurodevelopment: an evolutionary approach

Journal

EVOLUTIONARY APPLICATIONS
Volume 2, Issue 1, Pages 81-100

Publisher

WILEY
DOI: 10.1111/j.1752-4571.2008.00056.x

Keywords

autism; evolution; gene copy-number variation; positive Darwinian selection; schizophrenia

Funding

  1. NSERC
  2. Canada Council for the Arts
  3. ECU College Research Award
  4. NIH Ruth L. Kirschstein National Research Service Award

Ask authors/readers for more resources

Genomic sister-disorders are defined here as diseases mediated by duplications versus deletions of the same region. Such disorders can provide unique information concerning the genomic underpinnings of human neurodevelopment because effects of diametric variation in gene copy number on cognitive and behavioral phenotypes can be inferred. We describe evidence from the literature on deletions versus duplications for the regions underlying the best-known human neurogenetic sister-disorders, including Williams syndrome, Velocardiofacial syndrome, and Smith-Magenis syndrome, as well as the X-chromosomal conditions Klinefelter and Turner syndromes. These data suggest that diametric copy-number alterations can, like diametric alterations to imprinted genes, generate contrasting phenotypes associated with autistic-spectrum and psychotic-spectrum conditions. Genomically based perturbations to the development of the human social brain are thus apparently mediated to a notable degree by effects of variation in gene copy number. We also conducted the first analyses of positive selection for genes in the regions affected by these disorders. We found evidence consistent with adaptive evolution of protein-coding genes, or selective sweeps, for three of the four sets of sister-syndromes analyzed. These studies of selection facilitate identification of candidate genes for the phenotypes observed and lend a novel evolutionary dimension to the analysis of human cognitive architecture and neurogenetic disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available