4.2 Article

The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways

Journal

EVOLUTION & DEVELOPMENT
Volume 12, Issue 5, Pages 519-533

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1525-142X.2010.00436.x

Keywords

-

Funding

  1. Australian Research Council

Ask authors/readers for more resources

P>Members of the Toll-like receptor (TLR) and the interleukin 1 receptor (IL1R) superfamilies activate various signaling cascades that are evolutionarily conserved in eumetazoans. In this study, we have searched the genome and expressed sequence tags of the demosponge Amphimedon queenslandica for molecules involved in TLR and IL1R signaling. Although we did not identify a conventional TLR or ILR, the Amphimedon genome encodes two related receptors, AmqIgTIRs, which are comprised of at least three extracellular IL1R-like immunoglobulins (Ig) and an intracellular TLR-like Toll/interleukin1 receptor/resistance (TIR) domain. The remainder of the TLR/IL1R pathway is mostly conserved in Amphimedon and includes genes known to interact with TLRs and IL1Rs in bilaterians, such as Toll-interacting protein (Tollip) and myeloid differentiation factor 88 (MyD88). By comparing the sponge genome to that of nonmetazoan eukaryotes and other basal animal phyla (i.e., placozoan and cnidarian representatives) we can infer that most components of the signaling cascade, including the receptors, evolved after the divergence of metazoan, and choanoflagellate lineages. In most cases, these proteins are composed of metazoan-specific domains (e.g., Pellino) or architectures (e.g., the association of a death domain with a TIR domain in the MyD88). The dynamic expression of the two AmqIgTIRs, AmqMyD88, AmqTollip, and AmqPellino during Amphimedon embryogenesis and larval development is consistent with the TLR/IL1R pathway having a role in both development and immunity in the last common metazoan ancestor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available