4.5 Article

DO FRESHWATER FISHES DIVERSIFY FASTER THAN MARINE FISHES? A TEST USING STATE-DEPENDENT DIVERSIFICATION ANALYSES AND MOLECULAR PHYLOGENETICS OF NEW WORLD SILVERSIDES (ATHERINOPSIDAE)

Journal

EVOLUTION
Volume 67, Issue 7, Pages 2040-2057

Publisher

WILEY
DOI: 10.1111/evo.12074

Keywords

Biogeography; BiSSE; extinction; macroevolution; species richness; speciation

Funding

  1. AMNH Lerner-Gray
  2. University of Toronto Centre for Global Change Studies
  3. NSERC Discovery Grant
  4. National Science Foundation [DEB 0918073]
  5. Division Of Environmental Biology
  6. Direct For Biological Sciences [0918073] Funding Source: National Science Foundation

Ask authors/readers for more resources

Freshwater habitats make up only approximate to 0.01% of available aquatic habitat and yet harbor 40% of all fish species, whereas marine habitats comprise >99% of available aquatic habitat and have only 60% of fish species. One possible explanation for this pattern is that diversification rates are higher in freshwater habitats than in marine habitats. We investigated diversification in marine and freshwater lineages in the New World silverside fish clade Menidiinae (Teleostei, Atherinopsidae). Using a time-calibrated phylogeny and a state-dependent speciation-extinction framework, we determined the frequency and timing of habitat transitions in Menidiinae and tested for differences in diversification parameters between marine and freshwater lineages. We found that Menidiinae is an ancestrally marine lineage that independently colonized freshwater habitats four times followed by three reversals to the marine environment. Our state-dependent diversification analyses showed that freshwater lineages have higher speciation and extinction rates than marine lineages. Net diversification rates were higher (but not significant) in freshwater than marine environments. The marine lineage-through time (LTT) plot shows constant accumulation, suggesting that ecological limits to clade growth have not slowed diversification in marine lineages. Freshwater lineages exhibited an upturn near the recent in their LTT plot, which is consistent with our estimates of high background extinction rates. All sequence data are currently being archived on Genbank and phylogenetic trees archived on Treebase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available