4.5 Article

CONTEMPORARY EVOLUTION OF SEA URCHIN GAMETE-RECOGNITION PROTEINS: EXPERIMENTAL EVIDENCE OF DENSITY-DEPENDENT GAMETE PERFORMANCE PREDICTS SHIFTS IN ALLELE FREQUENCIES OVER TIME

Journal

EVOLUTION
Volume 66, Issue 6, Pages 1722-1736

Publisher

WILEY
DOI: 10.1111/j.1558-5646.2012.01608.x

Keywords

Density-dependent selection; fertilization success; frequency-dependent selection; polyspermy; sexual conflict; sperm bindin

Funding

  1. National Science Foundation
  2. Direct For Biological Sciences
  3. Division Of Environmental Biology [822626] Funding Source: National Science Foundation

Ask authors/readers for more resources

Species whose reproductive strategies evolved at one density regime might be poorly adapted to other regimes. Field and laboratory experiments on the sea urchin Strongylocentrotus franciscanus examined the influences of the two most common sperm-bindin alleles, which differ at two amino acid sites, on fertilization success. In the field experiment, the arginine/glycine (RG) genotype performed best at low densities and the glycine/arginine (GR) genotype at high densities. In the laboratory experiment, the RG genotype had a higher affinity with available eggs, whereas the GR genotype was less likely to induce polyspermy. These sea urchins can reach 200 years of age. The RG allele dominates in larger/old sea urchins, whereas smaller/younger sea urchins have near-equal RG and GR allele frequencies. A latitudinal cline in RG and GR genotypes is consistent with longer survival of sea urchins in the north and with predominance of RG genotypes in older individuals. The largest/oldest sea urchins were likely conceived at low densities, before sea-urchin predators, such as sea otters, were overharvested and sea-urchin densities exploded off the west coast of North America. Contemporary evolution of gamete-recognition proteins might allow species to adapt to shifts in abundances and reduces the risk of reproductive failure in altered populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available