4.5 Article

RECONSTRUCTING RETICULATION HISTORY IN A PHYLOGENETIC FRAMEWORK AND THE POTENTIAL OF ALLOPATRIC SPECIATION DRIVEN BY POLYPLOIDY IN AN AGAMIC COMPLEX IN CRATAEGUS (ROSACEAE)

Journal

EVOLUTION
Volume 64, Issue 12, Pages 3593-3608

Publisher

WILEY
DOI: 10.1111/j.1558-5646.2010.01063.x

Keywords

Allopatric establishment; allopolyploidy; autopolyploidy; Crataegus; haplotype network; gene duplications

Funding

  1. Natural Sciences and Engineering Research Council of Canada [A3430, 326439-06]
  2. Botany Department of the University of Toronto
  3. Department of Natural History of the Royal Ontario Museum
  4. Royal Ontario Museum Foundation
  5. TAD

Ask authors/readers for more resources

Polyploidy plays a prominent role in the speciation process in plants. Many species are known to be part of agamic complexes comprising sexual diploids and more or less exclusively asexual polyploids. However, polyploid formation has been studied in very few cases, primarily because of the challenges in examining these cases phylogenetically. In this study, we demonstrate the use of a variety of phylogenetic approaches to unravel origins and infer reticulation history in a diploid-polyploid complex of black-fruited Crataegus. The tree approaches are shown to be useful in testing alternative hypotheses and in revealing genealogies of nuclear genes, particularly in polyploid organisms that may contain multiple copies. Compared to trees, network approaches provide a better indication of reticulate relationships among recently diverged taxa. Taken together, our data point to both the autopolyploid and allopolyploid origins of triploids in natural populations of Crataegus suksdorfii, whereas tetraploids are formed via a triploid bridge, involving the backcross of allotriploid offspring with their diploid C. suksdorfii parent, followed by gene introgression from sympatric C. douglasii. Our findings provide empirical evidence for different pathways of polyploid formation that are all likely to occur within natural populations and the allopatric establishment of neopolyploids subsequent to their formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available