4.5 Article

ON THE EVOLUTION OF DIFFERENTIATED MULTICELLULARITY

Journal

EVOLUTION
Volume 63, Issue 2, Pages 306-323

Publisher

WILEY
DOI: 10.1111/j.1558-5646.2008.00541.x

Keywords

Benefit functions; differentiation; quantitative trait; reproductive cells; somatic cells

Funding

  1. NSF/NIH [r01gm078986]
  2. Evolutionary Dynamics at Harvard University

Ask authors/readers for more resources

Most conspicuous organisms are multicellular and most multicellular organisms develop somatic cells to perform specific, nonreproductive tasks. The ubiquity of this division of labor suggests that it is highly advantageous. In this article I present a model to study the evolution of specialized cells. The model allows for unicellular and multicellular organisms that may contain somatic (terminally differentiated) cells. Cells contribute additively to a quantitative trait. The fitness of the organism depends on this quantitative trait (via a benefit function), the size of the organism, and the number of somatic cells. The model allows one to determine when somatic cells are advantageous and to calculate the optimum number (or fraction) of reproductive cells. I show that the fraction of reproductive cells is always surprisingly high. If somatic cells are very small, they can outnumber reproductive cells but their biomass is still less than the biomass of reproductive cells. I discuss the biology of primitive multicellular organisms with respect to the model predictions. I find a good agreement and outline how this work can be used to guide further quantitative studies of multicellularity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available