4.7 Article

Impaired Neuronal Operation through Aberrant Intrinsic Plasticity in Epilepsy

Journal

ANNALS OF NEUROLOGY
Volume 77, Issue 4, Pages 592-606

Publisher

WILEY
DOI: 10.1002/ana.24348

Keywords

-

Funding

  1. Institut National de la Sante et de la Recherche Medicale
  2. Agence Nationale de la Recherche [ANR-09-BLAN-0259-01]
  3. Ministere de l'Enseignement Superieur et de la Recherche
  4. Ligue Francaise contre l'Epilepsie
  5. Agence Nationale de la Recherche (ANR) [ANR-09-BLAN-0259] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

ObjectivePatients with temporal lobe epilepsy often display cognitive comorbidity with recurrent seizures. However, the cellular mechanisms underlying the impairment of neuronal information processing remain poorly understood in temporal lobe epilepsy. Within the hippocampal formation neuronal networks undergo major reorganization, including the sprouting of mossy fibers in the dentate gyrus; they establish aberrant recurrent synapses between dentate granule cells and operate via postsynaptic kainate receptors. In this report, we tested the hypothesis that this aberrant local circuit alters information processing of perforant path inputs constituting the major excitatory afferent pathway from entorhinal cortex to dentate granule cells. MethodsExperiments were performed in dentate granule cells from control rats and rats with temporal lobe epilepsy induced by pilocarpine hydrochloride treatment. Neurons were recorded in patch clamp in whole cell configuration in hippocampal slices. ResultsOur present data revealed that an aberrant readout of synaptic inputs by kainate receptors triggered a long-lasting impairment of the perforant path input-output operation in epileptic dentate granule cells. We demonstrated that this is due to the aberrant activity-dependent potentiation of the persistent sodium current altering intrinsic firing properties of dentate granule cells. InterpretationWe propose that this aberrant activity-dependent intrinsic plasticity, which lastingly impairs the information processing of cortical inputs in dentate gyrus, may participate in hippocampal-related cognitive deficits, such as those reported in patients with epilepsy. Ann Neurol 2015;77:592-606

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available