4.6 Article

Breathprints of model murine bacterial lung infections are linked with immune response

Journal

EUROPEAN RESPIRATORY JOURNAL
Volume 45, Issue 1, Pages 181-190

Publisher

EUROPEAN RESPIRATORY SOC JOURNALS LTD
DOI: 10.1183/09031936.00015814

Keywords

-

Funding

  1. National Center for Research Resources [5P20RR021905-07]
  2. National Institute of General Medical Sciences [8 P20 GM103496-07]
  3. National Institutes of Health
  4. NASA EPSCoR [NNH09ZNE002C]
  5. Cystic Fibrosis Foundation

Ask authors/readers for more resources

In this model study, we explored the host's contribution of breath volatiles to diagnostic secondary electrospray ionisation-mass spectrometry (SESI-MS) breathprints for acute bacterial lung infections, their correlation with the host's immune response, and their use in identifying the lung pathogen. Murine airways were exposed to Pseudomonas aeruginosa and Staphylococcus aureus bacterial cell lysates or to PBS (controls), and their breath and bronchoalveolar lavage fluid (BALF) were collected at six time points (from 6 to 120 h) after exposure. Five to six mice per treatment group and four to six mice per control group were sampled at each time. Breath volatiles were analysed using SESI-MS and the BALF total leukocytes, polymorphonudear neutrophils, lactate dehydrogenase activity, and cytokine concentrations were quantified. Lysate exposure breathprints contain host volatiles that persist for up to 120 h; are pathogen specific; are unique from breathprints of controls, active infections and cleared infections; and are correlated with the host's immune response. Bacterial lung infections induce changes to the host's breath volatiles that are selective and specific predictors of the source of infection. Harnessing the pathogen-specific volatiles in the host's breath may provide useful information for detecting latent bacterial lung infections and managing the spread of respiratory diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available