4.7 Article

Mechanical, crystallisation and moisture absorption properties of melt drawn polylactic acid fibres

Journal

EUROPEAN POLYMER JOURNAL
Volume 53, Issue -, Pages 270-281

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2014.02.001

Keywords

PLA fibre; Chain orientation; Crystallinity; Tensile properties; Moisture absorption

Funding

  1. University of Nottingham
  2. EPSRC [EP/J015687/1]
  3. Engineering and Physical Sciences Research Council [EP/J015687/1] Funding Source: researchfish
  4. EPSRC [EP/J015687/1] Funding Source: UKRI

Ask authors/readers for more resources

Polylactic acid (PLA) fibres were produced with average diameter ranging from 11 to 38 pm via a melt drawing process employing increasing take-up velocities. The PLA fibres exhibited smooth surfaces and uniformity in diameter as determined by scanning electron (SEM) and optical microscopy (OM). Fourier Transform Infrared Spectroscopic (FTIR) analysis using the dichroic ratio demonstrated alignment of PLA chains with the draw direction, where the lower diameter PLA fibres exhibited a higher degree of chain orientation during the high speed melt drawing process. The crystallinity of the fibres also increased up to 34% with decreasing fibre diameter due to strain-induced crystallisation. The room temperature tensile strength and modulus of the smaller PLA fibres with an average diameter of 11 gm revealed values of 213 MPa and 4.8 GPa, respectively. These fibres revealed a significant decrease in their tensile strength (by 29%) when tested at 37 degrees C compared to the room temperature value. Comparatively larger diameter PLA fibres did not show any significant change in their mechanical properties at 37 C. The variation in diameter of PLA fibres also revealed a noticeable influence in moisture absorption at various humidity levels believed to be due to the effect of crystallinity on water absorption. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available