4.7 Article

Electrochemical impedance study on nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends

Journal

EUROPEAN POLYMER JOURNAL
Volume 49, Issue 9, Pages 2645-2653

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2013.06.012

Keywords

Poly(m-anthranilic acid); Electroactive nanofibers; Electrochemical impedance spectroscopy; SEM

Funding

  1. TUBITAK [111T051]

Ask authors/readers for more resources

The nanofibers of poly(m-anthranilic acid) (P3ANA) blends with polyacrylonitrile (PAN) were obtained by electrospinning technique. Electrochemical impedance spectroscopy (EIS) revealed the presence of poly(m-anthranilic acid) in the composite nanofiber structure in addition to the FTIR-ATR spectrophotometric evidences. During the electrospinning P3ANA increased the charge density of polyacrylonitrile solution, and thus, stronger elongation forces were imposed to the jets because of the self-repulsion of the excess charges under the electrical field. This yielded electrospun nanofibers with a substantially straighter shape and smaller diameter. The EIS data were fitted with an equivalent electrical circuit giving a good correlation. SEM analysis of nanofibers showed smaller diameter than for the other nanofibers bearing less ionic groups. Composite bearing carboxylic acid group as a side chains strongly effect the Impedance behavior of nanofibers compared to unsubstituted ones. Poly(m-anthranilic acid) as a charge carriers resulted an important influence on the conductivity of nanofibers. Due to their reactive end groups, nanofibers could be useful for post-polymerization functionalization on the surface. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available