4.7 Article

Tribological behavior of polyurethane-based composite coating reinforced with TiO2 nanotubes

Journal

EUROPEAN POLYMER JOURNAL
Volume 44, Issue 4, Pages 1012-1022

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2008.02.004

Keywords

TiO2 nanotubes; polyurethane coating; tribological behavior; transfer films

Ask authors/readers for more resources

The unmodified and hexamethylene diisocyanate (HDI) modified TiO2 nanotubes, were used for fabricating TiO2 nanotubes (TiNTs)/polyurethane (PU) composite coating. The effects of applied load and sliding speed on the tribological behavior of the composite coating were investigated using a block-on-ring wear tester. Compared to the TiO2 nanotubes filled PU composite coating, the HDI modified TiO2 nanotubes (TiNTs-HDI) filled one had the lower friction coefficient and higher wear life under various applied loads and sliding speed. Scanning electron microscope (SEM) investigation showed that the TiNTs-HDI filled PU coating had smooth worn surface under given applied load and sliding speed, and a continuous and uniform transfer film formed on the surface of the counterpart ring, which helped to reduce the wear of the coating. The improvement in the tribological properties of TiNTs-HDI/PU composite coating might due to an improvement in interfacial adhesion between TiNTs and PU after HDI treatment. The strong interfacial coupling of the composite coating made TiNTs-HDI not easy to detach from the PU matrix, and prevented the rubbing-off of PU composite coating, accordingly improved the friction and wear properties of the composite coating. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available