4.4 Review

Exploiting sparsity and equation-free architectures in complex systems

Journal

EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
Volume 223, Issue 13, Pages 2665-2684

Publisher

SPRINGER HEIDELBERG
DOI: 10.1140/epjst/e2014-02285-8

Keywords

-

Ask authors/readers for more resources

Complex systems exhibit dynamics that typically evolve on low-dimensional attractors and may have sparse representation in some optimal basis. Recently developed compressive sensing techniques exploit this sparsity for state reconstruction and/or categorical identification from limited measurements. We argue that data-driven dimensionality reduction methods integrate naturally with sparse sensing in the context of complex systems. This framework works equally well with a physical model or in an equation-free context, where data is available but the governing equations may be unknown. We demonstrate the advantages of combining these methods on three prototypical examples: classification of dynamical regimes, optimal sensor placement, and equation-free dynamic model reduction. These examples motivate the potentially transformative role that state-of-the-art data methods and machine learning can play in the analysis of complex systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available