4.1 Article

Influence of Fe/Cr on nitrogen doped carbon nanotube growth

Journal

EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS
Volume 42, Issue 3, Pages 247-250

Publisher

EDP SCIENCES S A
DOI: 10.1051/epjap:2008060

Keywords

-

Ask authors/readers for more resources

Using electron energy loss spectroscopy in a 100 kV VG scanning transmission electron microscope we study nitrogen doped carbon nanotubes grown via electron cyclotron resonance (ECR) microwave plasma techniques. The process is controlled by direct current (dc) biasing the grid separating the ECR source and the substrate. We show that plasma induced sputtering of the ECR source wall (stainless steel) can lead to significant iron and chromium contamination of growth samples. We identify various Fe, Cr, Ni nitride phases, and propose a growth model based on nitridation-induced metal segregation of steel based FeCrN alloys. Trace Cr doping of nanotube catalysts appears a promising route for introducing large nitrogen concentrations into both single and multi-walled nanotubes and may accelerate nanotube growth rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available