4.3 Article

Interface dynamics under nonequilibrium conditions: From a self-propelled droplet to dynamic pattern evolution

Journal

EUROPEAN PHYSICAL JOURNAL E
Volume 34, Issue 4, Pages -

Publisher

SPRINGER
DOI: 10.1140/epje/i2011-11038-3

Keywords

-

Ask authors/readers for more resources

In this article, we describe the instability of a contact line under nonequilibrium conditions mainly based on the results of our recent studies. Two experimental examples are presented: the self-propelled motion of a liquid droplet and spontaneous dynamic pattern formation. For the self-propelled motion of a droplet, we introduce an experiment in which a droplet of aniline sitting on an aqueous layer moves spontaneously at an air-water interface. The spontaneous symmetry breaking of Marangoni-driven spreading causes regular motion. In a circular Petri dish, the droplet exhibits either beeline motion or circular motion. On the other hand, we show the emergence of a dynamic labyrinthine pattern caused by dewetting of a metastable thin film from the air-water interface. The contact line between the organic phase and the aqueous phase forms a unique spatio-temporal pattern characterized as a dynamic labyrinth. Motion of the contact line is controlled by diffusion processes. We propose a theoretical model to interpret essential aspects of the observed dynamic behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available