4.3 Article

Self-ordering and collective dynamics of transversely illuminated point-scatterers in a 1D trap

Journal

EUROPEAN PHYSICAL JOURNAL D
Volume 68, Issue 11, Pages -

Publisher

SPRINGER
DOI: 10.1140/epjd/e2014-50692-2

Keywords

-

Funding

  1. Austrian Science Fund (FWF) through SFB Foqus Project [F4006 N16]

Ask authors/readers for more resources

We study point-like polarizable particles confined in a 1D very elongated trap within the evanescent field of an optical nano-fiber or nano-structure. When illuminated transversely by coherent light, collective light scattering into propagating fiber modes induces long-range interactions and eventually crystallization of the particles into regular order. We develop a simple and intuitive scattering-matrix based approach to study these long-range interactions by collective scattering and the resulting light-induced self-ordering. For few particles we derive explicit conditions for self-consistent stable ordering. In the purely dispersive limit with negligible back-scattering, we recover the prediction of an equidistant lattice as previously found for effective dipole-dipole interaction models. We generalize our model to experimentally more realistic configurations including backscattering, absorption and a directional scattering asymmetry. For larger particle ensembles the resulting self-consistent particle-field equations can be numerically solved to study the formation of long-range order and stability limits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available