4.2 Article

Quantum quenches in one-dimensional gapless systems

Journal

EUROPEAN PHYSICAL JOURNAL B
Volume 86, Issue 2, Pages -

Publisher

SPRINGER
DOI: 10.1140/epjb/e2012-30978-y

Keywords

-

Ask authors/readers for more resources

We present a comparison between the bosonization results for quantum quenches and exact diagonalizations in microscopic models of interacting spinless fermions in a one-dimensional lattice. The numerical analysis of the long-time averages shows that density-density correlations at small momenta tend to a non-zero limit, mimicking a thermal behavior. These results are at variance with the bosonization approach, which predicts the presence of long-wavelength critical properties in the long-time evolution. By contrast, the numerical results for finite momenta suggest that the singularities at 2k(F) in the density-density correlations and at k(F) in the momentum distribution are preserved during the time evolution. The presence of an interaction term that breaks integrability flattens out all singularities, suggesting that the time evolution of one-dimensional lattice models after a quantum quench may differ from that of the Luttinger model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available