4.2 Article

Local topological phase transitions in periodic condensed matter systems

Journal

EUROPEAN PHYSICAL JOURNAL B
Volume 85, Issue 3, Pages -

Publisher

SPRINGER
DOI: 10.1140/epjb/e2012-21057-8

Keywords

-

Funding

  1. DFG-JST Research Unit Topological Electronics

Ask authors/readers for more resources

Topological properties of a periodic condensed matter system are global features of its Brillouin zone (BZ). In contrast, the validity of effective low energy theories is usually limited to the vicinity of a high symmetry point in the BZ. We derive a general criterion under which the control parameter of a topological phase transition localizes the topological defect in an arbitrarily small neighbourhood of a single point in k-space upon approaching its critical value. Such a local phase transition is associated with a Dirac-like gap closing point, whereas a flat band transition is not localized in k-space. This mechanism and its limitations are illustrated with the help of experimentally relevant examples such as HgTe/CdTe quantum wells and bilayer graphene nanostructures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available