4.8 Article

Redox Control of the Binding Modes of an Organic Receptor

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 137, Issue 34, Pages 11057-11068

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b05618

Keywords

-

Funding

  1. KACST
  2. NU
  3. National Science Foundation (NSF) [CHE-1266201]
  4. NSF-EFRI-ODISSEI [1332411]
  5. Fulbright Scholar Program
  6. Ryan Fellowship under NU International Institute of Nanotechnology (IIN)
  7. Direct For Mathematical & Physical Scien
  8. Division Of Chemistry [1266201] Funding Source: National Science Foundation
  9. Directorate For Engineering
  10. Emerging Frontiers & Multidisciplinary Activities [1332411] Funding Source: National Science Foundation

Ask authors/readers for more resources

The modulation of noncovalent bonding interactions by redox processes is a central theme in the fundamental understanding of biological systems as well as being ripe for exploitation in supramolecular science. In the context of host-guest systems, we demonstrate in this article how the formation of inclusion complexes can be controlled by manipulating the redox potential of a cyclophane. The four-electron reduction of cyclobis(paraquat-p-phenylene) to its neutral form results in altering its binding properties while heralding a significant change in its stereoelectronic behavior. Quantum mechanics calculations provide the energetics for the formation of the inclusion complexes between the cyclophane in its various redox states with a variety of guest molecules, ranging from electron-poor to electron-rich. The electron-donating properties displayed by the cyclophane were investigated by probing the interaction of this host with electron-poor guests, and the formation of inclusion complexes was confirmed by single-crystal X-ray diffraction analysis. The dramatic change in the binding mode depending on the redox state of the cyclophane leads to (i) aromatic donor-acceptor interactions in its fully oxidized form and (ii) van der Waals interactions when the cyclophane is fully reduced. These findings lay the foundation for the potential use of this class of cyclophane in various arenas, all the way from molecular electronics to catalysis, by virtue of its electronic properties. The extension of the concept presented herein into the realm of mechanically interlocked molecules will lead to the investigation of novel structures with redox control being expressed over the relative geometries of their components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available