4.8 Article

Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 137, Issue 3, Pages 1290-1295

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja511444e

Keywords

-

Funding

  1. University of Waterloo
  2. Canadian Foundation for Innovation
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)
  4. Ontario Ministry of Research and Innovation

Ask authors/readers for more resources

Hydrogen peroxide (H2O2) is a key molecule in biology. As a byproduct of many enzymatic reactions, H2O2 is also a popular biosensor target. Recently, interfacing H2O2 with inorganic nanoparticles has produced a number of nanozymes showing peroxidase or catalase activities. CeO2 nanoparticle (nanoceria) is a classical nanozyme. Herein, a fluorescently labeled DNA is used as a probe, and H2O2 can readily displace adsorbed DNA from nanoceria, resulting in over 20-fold fluorescence enhancement. The displacement mechanism instead of oxidative DNA cleavage is confirmed by denaturing gel electrophoresis and surface group pKa measurement. This system can sensitively detect H2O2 down to 130 nM (4.4 parts-per-billion). When coupled with glucose oxidase, glucose is detected down to 8.9 mu M in buffer. Detection in serum is also achieved with results comparable with that from a commercial glucose meter. With an understanding of the ligand role of H2O2, new applications in rational materials design, sensor development, and drug delivery can be further exploited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available