4.8 Article

Energetic Salts with π-Stacking and Hydrogen-Bonding Interactions Lead the Way to Future Energetic Materials

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 137, Issue 4, Pages 1697-1704

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja5126275

Keywords

-

Funding

  1. ONR [NOOO14-12-1-0536]

Ask authors/readers for more resources

Among energetic materials, there are two significant challenges facing researchers: 1) to develop ionic CHNO explosives with higher densities than their parent nonionic molecules and (2) to achieve a fine balance between high detonation performance and low sensitivity. We report a surprising energetic salt, hydroxylammonium 3-dinitromethanide-1,2,4-triazolone, that exhibits exceptional properties, viz., higher density, superior detonation performance, and improved thermal, impact, and friction stabilities, then those of its precursor, 3-dinitromethyl-1,2,4-triazolone. The solid-state structure features of the new energetic salt were investigated with X-ray diffraction which showed pi-stacking and hydrogen-bonding interactions that contribute to closer packing and higher density. According to the experimental results and theoretical analysis, the newly designed energetic salt also gives rise to a workable compromise in high detonation properties and desirable stabilities. These findings will enhance the future prospects for rational energetic materials design and commence a new chapter in this field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available