4.8 Article

Hyperbranched Self-Immolative Polymers (hSIPs) for Programmed Payload Delivery and Ultrasensitive Detection

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 137, Issue 36, Pages 11645-11655

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b05060

Keywords

-

Funding

  1. National Natural Scientific Foundation of China (NNSFC) [21274137, 51273190, 5147315, 51033005]
  2. Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) [20123402130010]

Ask authors/readers for more resources

Upon stimuli-triggered single cleavage of capping moieties at the focal point and chain terminal, self-immolative dendrimers (SIDs) and linear self-immolative polymers (l-SIPs) undergo spontaneous domino-like radial fragmentation and cascade head-to-tail depolymerization, respectively. The nature of response selectivity and signal amplification has rendered them a unique type of stimuli-responsive materials. Moreover, novel design principles are required for further advancement in the field of self-immolative polymers (SIPs). Herein, we report the facile fabrication of water-dispersible SIPs with a new chain topology, hyperbranched self-immolative polymers (hSIPs), by utilizing one-pot AB(2) polycondensation methodology and sequential postfunctionalization. The modular engineering of three categories of branching scaffolds, three types of stimuli-cleavable capping moieties at the focal point, and seven different types of peripheral functional groups and polymeric building blocks affords both structurally and functionally diverse hSIPs with chemically tunable amplified-release features. On the basis of the hSIP platform, we explored myriad functions including visible light-triggered intracellular release of peripheral conjugated drugs in a targeted and spatiotemporally controlled fashion, intracellular delivery and cytoplasmic reductive milieu-triggered plasmid DNA release via on/off multivalency switching, mitochondria-targeted fluorescent sensing of H2O2 with a detection limit down to similar to 20 nM, and colorimetric H2O2 assay via triggered dispersion of gold nanoparticle aggregates. To further demonstrate the potency and generality of the hSIP platform, we further configure it into biosensor design for the ultrasensitive detection of pathologically relevant antigens (e.g., human carcinoembryonic antigen) by integrating with enzyme-mediated cycle amplification with positive feedback and enzyme-linked immunosorbent assay (ELISA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available