4.5 Article

Quantifying the relationship between soil organic carbon and soil physical properties using shrinkage modelling

Journal

EUROPEAN JOURNAL OF SOIL SCIENCE
Volume 60, Issue 2, Pages 265-275

Publisher

WILEY
DOI: 10.1111/j.1365-2389.2008.01107.x

Keywords

-

Categories

Funding

  1. Federal Office for the Environment (BAFU/FOEN)

Ask authors/readers for more resources

Changes in soil organic carbon (SOC) may strongly affect soil structure and soil physical properties, which in turn may have feedback effects on the soil microbial activity and SOC dynamics. Such interactions are still not quantitatively described and accounted for in SOC dynamics modelling. The objective of this study was to test the hypothesis that soil shrinkage curve (ShC) analysis allows the establishment of close relationships between soil physical properties and SOC. We sampled a rice-cropped vertisol, a cambisol under conventional tillage and no-tillage and a restored cambisol. Soil samples were analysed for clay and SOC content, bulk volume, hydro-structural stability and plasma and structural pore volumes changes on the full water content range using ShC analysis. Although the soils behaved differently according to their constituents and history, changes in SOC linearly affected most of the soil physical properties, with stronger effects than changes in clay content. The observed effects of increasing SOC, such as increasing hydro-structural stability, specific bulk volume and water retention, agreed well with previously reported results. However, using ShC measurement and modelling allowed the observation of all these different effects simultaneously for small changes in SOC, and in a single measurement. Moreover, the relation between SOC changes and physical properties could be quantified. ShC analysis may, therefore, be used to account for the effect of changes in SOC on soil physical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available