4.7 Article

Low nanomolar thapsigargin inhibits the replication of vascular smooth muscle cells through reversible endoplasmic reticular stress

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 714, Issue 1-3, Pages 210-217

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2013.05.036

Keywords

Vascular; Proliferation; Thapsigargin; Endoplasmic reticular stress

Funding

  1. NIHR Biomedical Research Unit in Cardiovascular Medicine

Ask authors/readers for more resources

Thapsigargin (TG), an inhibitor of Ca2+ ATPase pumps in the endoplasmic reticulum (ER), inhibits replication of human vascular smooth muscle cell (hVSMC) at low nM concentrations. TG blocks replication of other cell types through promotion of ER stress (ERS). In order to determine whether ERS may mediate the cytostatic effect of TG in hVSMCs, the effect of TG on ERS in hVSMCs was studied by assessing markers of ERS: Immunoglobulin Heavy Chain Binding Protein (BiP), growth inhibitory transcription factor, GADD153, phosphorlylated eukaryotic initiation factor 2 alpha (p-eIF2 alpha) and phosphorlylated protein kinase R (p-PKR). hVSMCs derived from saphenous veins were rendered quiescent with serum-free medium for 96 h incubated with 10 nM TG at 37 degrees C for 24 h, then washed free of TG and incubated with 10% foetal calf serum (FCS) for a further 24 h. At selected times, BiP, GADD153, p-eIF2 alpha, p-PKR and cyclin D1 expression was assessed. TG promoted a marked increase in BiP and GADD153, but suppressed cyclin D1 mRNA and protein expression. Under serum-free conditions p-eIF2 alpha and p-PKR expression was not enhanced by TG. 15-24 h After removal of TG all these factors returned to levels seen in control cells. These data demonstrate that the inhibitory effect of 10 nM TG on hVSMC replication is mediated through induction of ERS and associated factors that cessate replication and is reversible. These observations have implications in the aetiology and treatment of diseases that include atherogenesis, vein graft failure and restenosis. (c) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available