4.8 Article

Interplay of Experiment and Theory in Elucidating Mechanisms of Oxidation Reactions by a Nonheme RuIVO Complex

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 137, Issue 26, Pages 8623-8632

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b04787

Keywords

-

Funding

  1. NRF of Korea through CRI [NRF-2012R1A3A2048842]
  2. MSIP [2013R1A1A2062737]
  3. GRL [NRF-2010-00353]
  4. Israel Science Foundation (ISF) [1183/12]

Ask authors/readers for more resources

A comprehensive experimental and theoretical study of the reactivity patterns and reaction mechanisms in alkane hydroxylation, olefin epoxidation, cyclohexene oxidation, and sulfoxidation reactions by a mononuclear nonheme ruthenium(IV)-oxo complex, [Ru-IV(O)(terpy)-(bpm)](2+) (1), has been conducted. In alkane hydroxylation (i.e., oxygen rebound vs oxygen non-rebound mechanisms), both the experimental and theoretical results show that the substrate radical formed via a rate-determining H atom abstraction of alkanes by 1 prefers dissociation over oxygen rebound and desaturation processes. In the oxidation of olefins by 1, the observations of a kinetic isotope effect (KIE) value of 1 and styrene oxide formation lead us to conclude that an epoxidation reaction via oxygen atom transfer (OAT) from the (RuO)-O-IV complex to the C=C double bond is the dominant pathway. Density functional theory (DFT) calculations show that the epoxidation reaction is a two-step, two-spin-state process. In contrast, the oxidation of cyclohexene by 1 affords products derived from allylic C-H bond oxidation, with a high KIE value of 38(3). The preference for H atom abstraction over C=C double bond epoxidation in the oxidation of cyclohexene by 1 is elucidated by DFT calculations, which show that the energy barrier for C-H activation is 4.5 kcal mol(-1) lower than the energy barrier for epoxidation. In the oxidation of sulfides, sulfoxidation by the electrophilic Ru-oxo group of 1 occurs via a direct OAT mechanism, and DFT calculations show that this is a two-spin-state reaction in which the transition state is the lowest in the S = 0 state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available