4.8 Article

The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 137, Issue 24, Pages 7775-7784

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b02919

Keywords

-

Funding

  1. Iranian Ministry of Health and Medical Education
  2. NWO [722.012.002, 723.014.003, 700.56.442, 700.58.102]
  3. FEBS Distinguished Young Investigator Award

Ask authors/readers for more resources

Nanovesicles self-assembled from amphiphilic peptides are promising candidates for applications in drug delivery. However, complete high-resolution data on the local and supramolecular organization of such materials has been elusive thus far, which is a substantial obstacle to their rational design. In the absence of precise information, nanovesicles built of amphiphilic lipid-like peptides are generally assumed to resemble liposomes that are organized from bilayers of peptides with a tail-to-tail ordering. Using the nanocarrier formed by the amphiphilic self-assembling peptide 2 (SA2 peptide) as an example, we derive the local and global organization of a multimega-Dalton peptide-based nanocarrier at high molecular detail and at close-to physiological conditions. By integrating a multitude of experimental techniques (solid-state NMR, AFM, SLS, DLS, FT-IR, CD) with large- and multiscale MD simulations, we show that SA2 nanocarriers are built of interdigitated antiparallel beta-sheets, which bear little resemblance to phospholipid liposomes. Our atomic level study allows analyzing the vesicle surface structure and dynamics as well as the intermolecular forces between peptides, providing a number of potential leads to improve and tune the biophysical properties of the nanocarrier. The herein presented approach may be of general utility to investigate peptide-based nanomaterials at high-resolution and at physiological conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available