4.7 Article

Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-κB and Akt pathways

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 580, Issue 1-2, Pages 70-79

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2007.11.013

Keywords

berberine; RANKL; osteoclast; Akt; NF-kappa B; apoptosis

Ask authors/readers for more resources

Berberine, an isoquinoline alkaloid isolated from several medicinal plants, has been reported to possess anti-bacterial, anti-inflammatory and antitumor properties. Although berberine also inhibits osteoclastogenesis and bone resorption, the molecular machinery for its inhibitory effects remains unknown. This study focused on the suppressive effects of berberine on receptor activator of nuclear factor kappa B (NF-kappa B) ligand (RANKL)induced osteoclastogenesis and survival. Berberine inhibited RANKL-mediated osteoclast fort-nation and survival while having no cytotoxic effects on bone marrow macrophages or osteoblastic cells. Berberine attenuated RANKL-induced activation of NF-kappa B through inhibiting phosphorylation at the activation loop of I kappa B alpha kinase, phosphorylation and degradation of I kappa B alpha, and NF-kappa B p65 nuclear translocation. RANKL-induced Akt phosphorylation was strongly inhibited by berberine; however, neither monocyte/macrophage-colony stimulating factor (M-CSF)-induced nor insulin-induced Akt activation was inhibited by the drug. Under M-CSF- and RANKL-deprived condition, berberine increased the active form of caspase-3 in osteoclasts. By contrast, berberine did not potentiate the activation of caspase-3 in M-CSF-deprived bone marrow macrophages. These findings indicate that berberine inhibits osteoclast formation and survival through suppression of NF-kappa B and Akt activation and that both pathways in the osteoclast lineage are highly sensitive to berberine treatment. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available