4.7 Article

Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejpb.2014.02.013

Keywords

Blood-brain barrier; In vivo imaging; Surfactants; Zeta-potential; Polybutylcyanoacrylate nanoparticles; Cellular uptake of nanoparticles

Funding

  1. Otto-von-Guericke University
  2. Sybille Assmus-Foundation

Ask authors/readers for more resources

Nanoparticles (NP) can deliver drugs across the blood-brain barrier (BBB), but little is known which of the factors surfactant, size and zeta-potential are essential for allowing BBB passage. To this end we designed purpose-built fluorescent polybutylcyanoacrylate (PBCA) NP and imaged the NP's passage over the blood-retina barrier - which is a model of the BBB - in live animals. Rats received intravenous injections of fluorescent PBCA-NP fabricated by mini-emulsion polymerisation to obtain various NP's compositions that varied in surfactants (non-ionic, anionic, cationic), size (67464 nm) and zeta-potential. Real-time imaging of retinal blood vessels and retinal tissue was carried out with in vivo confocal neuroimaging (ICON) before, during and after NP's injection. Successful BBB passage with subsequent cellular labelling was achieved if NP were fabricated with non-ionic surfactants or cationic stabilizers but not when anionic compounds were added. NP's size and charge had no influence on BBB passage and cell labelling. This transport was not caused by an unspecific opening of the BBB because control experiments with injections of unlabelled NP and fluorescent dye (to test a door-opener effect) did not lead to parenchymal labelling. Thus, neither NP's size nor chemo-electric charge, but particle surface is the key factor determining BBB passage. This result has important implications for NP engineering in medicine: depending on the surfactant, NP can serve one of two opposite functions: while non-ionic tensides enhance brain up-take, addition of anionic tensides prevents it. NP can now be designed to specifically enhance drug delivery to the brain or, alternatively, to prevent brain penetration so to reduce unwanted psychoactive effects of drugs or prevent environmental nanoparticles from entering tissue of the central nervous system. (C) 2014 Elsevier B.V. All rights reserved.

Authors

Anonymous

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available