4.7 Article

Nano-engineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ejpb.2013.01.028

Keywords

Colon cancer; Combined cancer therapy; 5-Fluorouracil; Hyperthermia; Magnetic drug targeting; Magnetoliposome; Temperature-triggered drug release

Funding

  1. Instituto de Salud Carlos III, Spain [FIS 11/02571, FIS 11/01862]

Ask authors/readers for more resources

The present investigation aimed to develop magnetoliposome nanoparticles loaded with 5-fluorouracil by following a reproducible thin film hydration technique. The physicochemical characterization (including electron microscopy analysis, dynamic light scattering, infrared spectrometry, X-ray diffractometry, electrophoresis, and surface thermodynamics) suggested that superparamagnetic magnetite nuclei were successfully embedded into a multilamellar lipid vesicle. Magnetic responsiveness of these nanocomposites was quantitatively analyzed by determining the hysteresis cycle and qualitatively confirmed by microscopic visualizations. A high frequency alternating electromagnetic field was further used to define their heating properties. The absence of cytotoxicity in human colon fibroblast CCD-18 and in human colon carcinoma T-84 cell lines and excellent hemocompatibility of these core/shell particles were demonstrated. Additionally, 5-fluorouracil incorporation was investigated by two procedures: (i) entrapment into the nanoparticulate matrix and (ii) surface deposition onto already formed magnetoliposome particles. The former method reported greater drug loading values and a sustained release profile. Interestingly, 5-fluorouracil release was also triggered by the heating properties of the nanoparticles (hyperthermia-triggered drug release). Hence, we put forward that magnetoliposome particles hold important properties, that is, magnetically targeted delivery, hyperthermia inducing capability, high 5-fluorouracil loading capability, and hyperthermia-triggered burst drug release, suggestive of their potential for a combined antitumor therapy against colon cancer. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available