4.7 Review

Electrospun matrices for localized drug delivery: Current technologies and selected biomedical applications

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejpb.2012.01.016

Keywords

Electrospinning; Drug delivery; Biomaterials; Post-spinning modification; Protein; Nucleotide delivery

Ask authors/readers for more resources

Electrospinning allows for the preparation of unique matrices with nano- to micrometer sized fibers using diverse materials and numerous fabrication techniques. A variety of post-spinning modification techniques add to the large repertoire and enable development of tailored drug delivery systems. Herein we provide an overview on current developments regarding different techniques to manufacture electrospun matrices and achieve efficient drug loading and release. The delivery systems discussed employ a broad range of drugs from small molecules like antibiotics to protein drugs such as growth factors as well as nucleic acids for gene delivery or mRNA knockdown. We further highlight various biomedical applications, where the combined features of fibrous electrospun matrices and drug delivery function have resulted in first valuable results or seem to bear interesting prospects. In summary, electrospun scaffolds are highly versatile systems for the incorporation of various drugs and allow for significant variation with regard to scaffold material, spatial design, and surface modification. However, the multiplicity of options and parameters to vary during development of electrospun scaffold based drug delivery systems may also have contributed to the small number of the concepts that were successfully translated into therapeutic reality. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available