4.7 Article

Sustained-release matrix tablets of metformin hydrochloride in combination with triacetyl-β-cyclodextrin

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejpb.2007.06.004

Keywords

metformin hydrochloride; triacetyl-beta-cyclodextrin; sustained release; matrix tablets

Ask authors/readers for more resources

The low bioavailability and short half-life of metformin hydrochloride (MH) make the development of sustained-release forms desirable. However, drug absorption is limited to the upper gastrointestinal (GI) tract, thus requiring suitable delivery systems providing complete release during stomach-to-jejunum transit. This study was undertaken to develop a MH sustained-release formulation in compliance with these requirements. The strategy proposed is based on direct-compressed matrix tablets consisting of a combination of MH with the hydrophobic triacetyl-p-cyclodextrin (TA beta CD), dispersed in a polymeric material. Different polymers were tested as excipients, i.e. hydroxypropylmethylcellulose, xanthan gum, chitosan, ethylcellulose, Eudragit (R) L100-55, and Precirol (R). Compatibility among the formulation components was assessed by DSC analysis. All the tablets were examined for drug release pattern in simulated gastric and jejunal fluids used in sequence to mimic the GI transit. Release studies demonstrated that blends of a hydrophobic swelling polymer (hydroxypropylmethylcellulose or chitosan) with a pH-dependent one (Eudragit (R) L100-55) were more useful than single polymers in controlling drug release. Moreover, the main role played by the MH-TA beta CD system preparation method (i.e. grinding or spray-drying) in determining the behaviour of the final formulation was evidenced. In fact, for a given matrix-tablet composition, different sustained-release effects were obtained by varying the relative amounts of MH-TA beta CD as ground or spray-dried product. In particular, the 1:1 (w/w) blend of such systems, dispersed in a Eudragit-chitosan polymeric matrix, fully achieved the prefixed goal, giving about 30% released drug after 2 h at gastric pH, and overcoming 90% released drug within the subsequent 3 h in jejunal fluid. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available