4.6 Article

Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery

Journal

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 42, Issue 4, Pages 406-415

Publisher

ELSEVIER
DOI: 10.1016/j.ejps.2011.01.005

Keywords

Beads; Cellulose nanowhiskers; Controlled release tablets; Direct compression; Excipient; Suspension polymerization

Funding

  1. National Council for Scientific and Technological Development (CNPq), Ministry of Science and Technology (MCT) of the Brazilian Government
  2. State of Minas Gerais Research Foundation (FAPEMIG)

Ask authors/readers for more resources

Direct compression is one of the most popular techniques to prepare tablets but only a few commercial excipients are well adapted for this process into controlled release formulations. In the last years, the introduction of new materials for drug delivery matrix tablets has become more important. This paper evaluated the physicochemical and flow properties of new polymeric excipient of ethyl acrylate, methyl methacrylate and butyl metacrylate, synthesized by suspension polymerization using cellulose nanowhiskers as co-stabilizer, to be used as direct compression for modified release tablets. Infrared spectroscopy (FTIR) confirmed the success of the copolymerization reaction. Scanning electron microscopy (SEM) showed that excipient was obtained how spherical beads. Thermal properties of the beads were characterized by thermogravimetric (TG) analysis. Particle size analysis of the beads with cellulose nanowhiskers (CNWB) indicated that the presence of the nanowhiskers led to a reduction of particle size and to a narrower size distribution. In vitro test showed that the nanowhiskers and beads produced are nontoxic. Parameters such as Hausner ratio, Carr's index and cotangent of angle alpha were employed to characterize the flow properties of CNWB beads. Furthermore, the beads are used to produce tablets by direct compression contained propranolol hydrochloride as model drug. Dissolution tests performed suggested that beads could be used as excipient in matrix tablets with a potential use in drug controlled release. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available