4.6 Article

Physiologically based mechanistic modelling to predict complex drug-drug interactions involving simultaneous competitive and time-dependent enzyme inhibition by parent compound and its metabolite in both liver and gut-The effect of diltiazem on the time-course of exposure to triazolam

Journal

EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES
Volume 39, Issue 5, Pages 298-309

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejps.2009.12.002

Keywords

Multiple drug-drug interactions; Metabolite kinetics; Mechanism-based inhibition; Simulation; Diltiazem

Ask authors/readers for more resources

Aim: To predict the magnitude of metabolic drug-drug interaction (mDDI) between triazolam and diltiazem and its primary metabolite N-desmethyldiltiazem (MA). Methods: Relevant in vitro metabolic and inhibitory data were incorporated into a mechanistic physiologically based pharmacokinetic model within Simcyp (Version 9.1) to simulate the time-course of changes in active CYP3A4 content in gut and liver and plasma concentrations of diltiazem, MA and triazolam in a virtual population with characteristics related to in vivo studies. Results: The predicted median increases in AUC(0,infinity) of triazolam, which ranged from 3.9 to 9.5 for 20 simulated trials (median 5.9), were within 1.5-fold of the observed median value (4.4) in 14 of the trials. Considering the effects of diltiazem only and not those of MA, and ignoring auto-inhibition of MA metabolism and inhibition of its metabolism by diltiazem, resulted in lower increases in triazolam exposure (AUC ratios of 1.5-2.0 (median 1.7) and 2.7-5.3 (median 3.4), respectively). Conclusion: Prediction of mDDIs involving diltiazem requires consideration of both competitive and time-dependent inhibition in gut and liver by both diltiazem and MA, as well as the complex interplay between the two moieties with respect to mutual inhibition of parent compound and its metabolite. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available