4.1 Article

Stress distribution and displacement by different bone-borne palatal expanders with micro-implants: a three-dimensional finite-element analysis

Journal

EUROPEAN JOURNAL OF ORTHODONTICS
Volume 36, Issue 5, Pages 531-540

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/ejo/cjs063

Keywords

-

Ask authors/readers for more resources

The aim of this study was to analyze stress distribution and displacement of the maxilla and teeth according to different designs of bone-borne palatal expanders using micro-implants. A three-dimensional (3D) finite-element (FE) model of the craniofacial bones and maxillary teeth was obtained. Four designs of rapid maxillary expanders: one with micro-implants placed lateral to mid-palatal suture (type 1), the second at the palatal slope (type 2), the third as in type 1 with additional conventional Hyrax arms (type 3), and the fourth surgically assisted tooth-borne expander (type 4) were added to the FE models. Expanders were activated transversely for 0.25 mm. Geometric nonlinear theory was applied to evaluate Von-Mises Stress distribution and displacement. All types exhibited downward displacement and demonstrated more horizontal movement in the posterior area. Type 3 showed the most transverse displacement. The rotational movement of dentoalveolar unit was larger in types 1 and 3, whereas it was relatively parallel in types 2 and 4. The stresses were concentrated around the micro-implants in types 1 and 3 only. Type 2 had the least stress concentrations around the anchorage and showed alveolar expansion without buccal inclination. It is recommended to apply temporary anchorage devices to the palatal slopes to support expanders for efficient treatment of maxillary transverse deficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available