4.8 Article

Active Sites Implanted Carbon Cages in Core Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction

Journal

ACS NANO
Volume 10, Issue 1, Pages 684-694

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.5b05728

Keywords

core/shell nanoparticles; catalysis; N/B codoping; active surface area; hydrogen evolution reaction

Funding

  1. World Premier International Research Center Initiative (WPI Initiative) on Materials Nanoarchitectonics (MANA), MEXT, Japan
  2. National Basic Research Program of China (973 Program) [2014CB239301]

Ask authors/readers for more resources

Low efficiency and poor stability are two major challenges we encounter in the exploration of non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) in both acidic and alkaline environment. Herein, the hybrid of cobalt encapsulated by N, B codoped ultrathin carbon cages (Co@BCN) is first introduced as a highly active and durable nonprecious metal electrocatalysts for HER, which is constructed by a bottom-up approach using metal organic frameworks (MOFs) as precursor and self-sacrificing template. The optimized catalyst exhibited remarkable electrocatalytic performance for hydrogen production from both both acidic and alkaline media. Stability investigation reveals the overcoating of carbon cages can effectively avoid the corrosion and oxidation of the catalyst under extreme acidic and alkaline environment. Electrochemical active surface area (EASA) evaluation and density functional theory (DFT) calculations revealed that the synergetic effect between the encapsulated cobalt nanoparticle and the N, B codoped carbon shell played the fundamental role in the superior HER catalytic performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available