4.1 Article

Inactivation of Fam20b in the neural crest-derived mesenchyme of mouse causes multiple craniofacial defects

Journal

EUROPEAN JOURNAL OF ORAL SCIENCES
Volume 126, Issue 5, Pages 433-436

Publisher

WILEY
DOI: 10.1111/eos.12563

Keywords

biomineralization; glycosaminoglycan; kinase; Pierre-Robin sequence; proteoglycan

Funding

  1. NIH [DE022549]
  2. Natural Science Foundation of China [81771055]

Ask authors/readers for more resources

The glycosaminoglycan (GAG) chains attached to the core proteins of proteoglycans exert multiple roles, such as enriching signal molecules and regulating the binding of ligands to the corresponding receptors. A newly identified kinase - family with sequence similarity 20 member B (FAM20B) - is essential for the formation of GAG chains. The FAM20B protein phosphorylates the initial xylose on the side chain of a serine residue in the protein. Although the GAG chains of proteoglycans are believed to be indispensable during craniofacial development, there are few reports on their exact functions in craniofacial organogenesis. In this study, by mating Wnt1-cre mice with Fam20b-floxed mice (Fam20bflox/flox), we created Wnt1-Cre;Fam20bflox/flox mice in which Fam20b is ablated in the neural crest-derived mesenchyme. The Wnt1-Cre;Fam20bflox/flox mice died immediately after birth because of complete cleft palates. In addition to cleft palate, Wnt1-Cre;Fam20bflox/flox mice also manifested tongue elevation, micrognathia, microcephaly, suture widening, and reduced mineralization in the calvaria, facial bones, and temporomandibular joint. These findings indicate that the proteoglycans formed through the catalysis of FAM20B are essential for the morphogenesis and mineralization of the craniofacial complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available