4.7 Article

Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging

Journal

Publisher

SPRINGER
DOI: 10.1007/s00259-009-1065-5

Keywords

FDG-PET; Image processing; Partial volume correction; Whole-body PET

Ask authors/readers for more resources

Partial volume effects (PVEs) are consequences of the limited resolution of emission tomography. The aim of the present study was to compare two new voxel-wise PVE correction algorithms based on deconvolution and wavelet-based denoising. Deconvolution was performed using the Lucy-Richardson and the Van-Cittert algorithms. Both of these methods were tested using simulated and real FDG PET images. Wavelet-based denoising was incorporated into the process in order to eliminate the noise observed in classical deconvolution methods. Both deconvolution approaches led to significant intensity recovery, but the Van-Cittert algorithm provided images of inferior qualitative appearance. Furthermore, this method added massive levels of noise, even with the associated use of wavelet-denoising. On the other hand, the Lucy-Richardson algorithm combined with the same denoising process gave the best compromise between intensity recovery, noise attenuation and qualitative aspect of the images. The appropriate combination of deconvolution and wavelet-based denoising is an efficient method for reducing PVEs in emission tomography.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available