4.5 Article

Cerebellar theta burst stimulation dissociates memory components in eyeblink classical conditioning

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 40, Issue 9, Pages 3363-3370

Publisher

WILEY
DOI: 10.1111/ejn.12700

Keywords

cerebellum; eyeblink classical conditioning; learning and memory; transcranial magnetic stimulation

Categories

Funding

  1. European Union [CEREBNET FP7-ITN238686, REALNET FP7-ICT270434, HBP-604102]
  2. Italian Ministry of Health [RF-2009-1475845, GR-2009-1591859]

Ask authors/readers for more resources

The cerebellum plays a critical role in forming precisely timed sensory-motor associations. This process is thought to proceed through two learning phases: one leading to memory acquisition; and the other leading more slowly to memory consolidation and saving. It has been proposed that fast acquisition occurs in the cerebellar cortex, while consolidation is dislocated into the deep cerebellar nuclei. However, it was not clear how these two components could be identified in eyeblink classical conditioning (EBCC) in humans, a paradigm commonly used to investigate associative learning. In 22 subjects, we show that EBCC proceeded through a fast acquisition phase, returned toward basal levels during extinction and then was consolidated, as it became evident from the saving effect observed when re-testing the subjects after 1week of initial training. The results were fitted using a two-state multi-rate learning model extended to account for memory consolidation. Transcranial magnetic stimulation was used to apply continuous theta-burst stimulation (cTBS) to the lateral cerebellum just after the first training session. Half of the subjects received real cTBS and half sham cTBS. After cTBS, but not sham cTBS, consolidation was unaltered but the extinction process was significantly impaired. These data suggest that cTBS can dissociate EBCC extinction (related to the fast learning process) from consolidation (related to the slow learning process), probably by acting through a selective alteration of cerebellar plasticity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available