4.5 Article

Relaxin-3 innervation of the intergeniculate leaflet of the rat thalamus - neuronal tract-tracing and in vitro electrophysiological studies

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 37, Issue 8, Pages 1284-1294

Publisher

WILEY
DOI: 10.1111/ejn.12155

Keywords

arousal; circadian rhythms; periaqueductal grey; relaxin family peptide receptor 3; stress

Categories

Funding

  1. Polish Ministry of Science and Higher Education [N N303 569939]
  2. Commonwealth of Australia Endeavour Research Fellowship
  3. National Health and Medical Research Council (NHMRC) of Australia [277609, 509246, 1005988]
  4. Florey Medical Research Foundation
  5. Victorian Government Operational Infrastructure Support Program

Ask authors/readers for more resources

Behavioural state is controlled by a range of neural systems that are sensitive to internal and external stimuli. The relaxin-3 and relaxin family peptide receptor 3 (RXFP3) system has emerged as a putative ascending arousal network with putative involvement in regulation of stress responses, neuroendocrine control, feeding and metabolism, circadian activity and cognition. Relaxin-3/-aminobutyric acid neuron populations have been identified in the nucleus incertus, pontine raphe nucleus, periaqueductal grey (PAG) and an area dorsal to the substantia nigra. Relaxin-3-positive fibres/terminals densely innervate arousal-related structures in the brainstem, hypothalamus and limbic forebrain, but the functional significance of the heterogeneous relaxin-3 neuron distribution and its inputs to specific brain areas are unclear. Therefore, in this study, we used neuronal tract-tracing and immunofluorescence staining to explore the source of the dense relaxin-3 innervation of the intergeniculate leaflet (IGL) of the thalamus, a component of the neural circadian timing system. Confocal microscopy analysis revealed that relaxin-3-positive neurons retrogradely labelled from the IGL were predominantly present in the PAG and these neurons expressed corticotropin-releasing factor receptor-like immunoreactivity. Subsequently, whole-cell patch-clamp recordings revealed heterogeneous effects of RXFP3 activation in the IGL by the RXFP3 agonist, relaxin-3 B-chain/insulin-like peptide-5 A-chain (R3/I5). Identified, neuropeptide Y-positive IGL neurons, known to influence suprachiasmatic nucleus activity, were excited by R3/I5, whereas neurons of unidentified neurotransmitter content were either depolarized or displayed a decrease in action potential firing and/or membrane potential hyperpolarization. Our data identify a PAG to IGL relaxin-3/RXFP3 pathway that might convey stress-related information to key elements of the circadian system and influence behavioural state rhythmicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available