4.5 Article

Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 29, Issue 1, Pages 132-145

Publisher

WILEY
DOI: 10.1111/j.1460-9568.2008.06567.x

Keywords

blood-spinal cord barrier; hydrogel; microvasculature; poly(lactic-co-glycolic acid); rat; scaffold

Categories

Funding

  1. Discovery Eye Foundation
  2. Lincy Foundation
  3. NIH [NIH T90-DK070068]
  4. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL085416] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [T90DK070068] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Angiogenesis precedes recovery following spinal cord injury and its extent correlates with neural regeneration, suggesting that angiogenesis may play a role in repair. An important precondition for studying the role of angiogenesis is the ability to induce it in a controlled manner. Previously, we showed that a coculture of endothelial cells (ECs) and neural progenitor cells (NPCs) promoted the formation of stable tubes in vitro and stable, functional vascular networks in vivo in a subcutaneous model. We sought to test whether a similar coculture would lead to the formation of stable functional vessels in the spinal cord following injury. We created microvascular networks in a biodegradable two-component implant system and tested the ability of the coculture or controls (lesion control, implant alone, implant + ECs or implant + NPCs) to promote angiogenesis in a rat hemisection model of spinal cord injury. The coculture implant led to a fourfold increase in functional vessels compared with the lesion control, implant alone or implant + NPCs groups and a twofold increase in functional vessels over the implant + ECs group. Furthermore, half of the vessels in the coculture implant exhibited positive staining for the endothelial barrier antigen, a marker for the formation of the blood-spinal cord barrier. No other groups have shown positive staining for the blood-spinal cord barrier in the injury epicenter. This work provides a novel method to induce angiogenesis following spinal cord injury and a foundation for studying its role in repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available