4.5 Article

The maintenance of specific aspects of neuronal function and behavior is dependent on programmed cell death of adult-generated neurons in the dentate gyrus

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 29, Issue 7, Pages 1408-1421

Publisher

WILEY
DOI: 10.1111/j.1460-9568.2009.06693.x

Keywords

adult neurogenesis; Bax; cell death; LTP; synapse

Categories

Funding

  1. Korean Ministry of Science and Technology [M10412000078-04N1200-07810]
  2. 21C Frontier Brain Research Center [M103KV010018-03K2201-01820]
  3. KOSEF [R01-2004-000-10613-0]
  4. NIH [NS20402, NS048982]
  5. National Research Foundation of Korea [R01-2004-000-10613-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

A considerable number of new neurons are generated daily in the dentate gyrus (DG) of the adult hippocampus, but only a subset of these survive, as many adult-generated neurons undergo programmed cell death (PCD). However, the significance of PCD in the adult brain for the functionality of DG circuits is not known. Here, we examined the electrophysiological and behavioral characteristics of Bax-knockout (Bax-KO) mice in which PCD of post-mitotic neurons is prevented. The continuous increase in DG cell numbers in Bax-KO mice resulted in the readjustment of afferent and efferent synaptic connections, represented by age-dependent reductions in the dendritic arborization of DG neurons and in the synaptic contact ratio of mossy fibers with CA3 dendritic spines. These neuroanatomical changes were associated with reductions in synaptic transmission and reduced performance in a contextual fear memory task in 6-month-old Bax-KO mice. These results suggest that the elimination of excess DG neurons via Bax-dependent PCD in the adult brain is required for the normal organization and function of the hippocampus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available