4.7 Article

Design, synthesis and systematic evaluation of cytotoxic 3-heteroarylisoquinolinamines as topoisomerases inhibitors

Journal

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Volume 82, Issue -, Pages 181-194

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2014.05.047

Keywords

3-Heteroarylisoquinolinamine; Selective cytotoxicity; Topoisomerase I; Topoisomerase II; Molecular docking; Cell cycle arrest

Funding

  1. Ministry of Health & Welfare, Republic of Korea [HI12C1640]

Ask authors/readers for more resources

A series of 3-heteroarylisoquinolinamines were designed, synthesized and evaluated for cytotoxicity, topoisomerases (topos) inhibitory activities and cell cycle inhibition. Several of the 3-heteroarylisoquinolines exhibited selective cytotoxicity against human ductal breast epithelial tumor (T47D) cells over non-cancerous human breast epithelial (MCF-10A) and human prostate cancer (DU145) cells. Most of the derivatives showed greater cytotoxicity in human colorectal adenocarcinoma (HCT-15) cells than camptothecin (CPT), etoposide and doxorubicin (DOX). Generally, 3-heteroarylisoquinolinamines displayed greater affinity for topo I than topo II. 3-Heteroarylisoquinolinamines with greater topo I inhibitory effect exhibited potent cytotoxicity. Piperazine-substituted derivative, 5b, with potent topo land moderate topo II activities intercalated between DNA bases and interacted with topos through H-bonds at the DNA cleavage site of a docking model. Moreover, flow cytometry indicated that cytotoxic 3-heteroarylisoquinolinamines led to accumulation of human cervical (HeLa) cancer cells in the different phases of the cell cycle before apoptosis. Taken together, 3-heteroarylisoquinolinamines possessed potent cytotoxicity with topos and cell cycle inhibitory activities. (C) 2014 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available