4.7 Article

Bioisosteric replacement of an acylureido moiety attached to an indolin-2-one scaffold with a malonamido or a 2/4-pyridinoylamido moiety produces a selectively potent Aurora-B inhibitor

Journal

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
Volume 84, Issue -, Pages 312-334

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2014.07.033

Keywords

Aurora B; Kinase inhibitor; Indolin-2-one; Anticancer; Structure-activity relationship

Funding

  1. Industrial Technology Research Institute, Guangfu Road, Hsinchu, Taiwan [321]

Ask authors/readers for more resources

Bioisosteric replacement of acylureido moiety in 6-acylureido-3-pyrrolylmethylidene-2-oxoindoline derivatives resulted in a series of malonamido derivatives with indolin-2-one scaffold (11-14). Further conformational restrictions of the malonamido moiety led to 2-oxo-1,2-dihydropyridine (21-25) or a 4-oxo-1,4-dihydropyridine derivatives (31-36). 4-Oxo-1,4-dihydropyridine derivatives were more potent Aurora B inhibitors than their 2-oxo-1,2-dihydropyridine counterparts and demonstrated cytotoxicities against A549 and HepG2 cells in the submicromolar range. In A549 cells, 31h decreased phosphorylation of histone H3, triggered polyploidy, induced expression of pro-apoptotic Fas and FasL with subsequent activation of caspase 8, resulting into apoptosis. In a Huh7-xenograft mouse model, 31h demonstrated potent in vivo efficacy with a daily dose of 5 mg/kg. (C) 2014 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available