4.5 Article

Local and global instabilities of flow in a flexible-walled channel

Journal

EUROPEAN JOURNAL OF MECHANICS B-FLUIDS
Volume 28, Issue 4, Pages 541-557

Publisher

GAUTHIER-VILLARS/EDITIONS ELSEVIER
DOI: 10.1016/j.euromechflu.2009.03.002

Keywords

Compliant channel; Convective instabilities; Wave-reflections; Self-excited oscillations

Ask authors/readers for more resources

We consider laminar high-Reynolds-number flow through a long finite-length planar channel, where a segment of one wall is replaced by a massless membrane held under longitudinal tension. The flow is driven by a fixed pressure difference across the channel and is described using an integral form of the unsteady boundary-layer equations. The basic flow state, for which the channel has uniform width, exhibits static and oscillatory global instabilities, having distinct modal forms. In contrast, the corresponding local problem (neglecting boundary conditions associated with the rigid parts of the system) is found to be convectively, but not absolutely, unstable to small-amplitude disturbances in the absence of wall damping. We show how amplification of the primary global oscillatory instability can arise entirely from wave reflections with the rigid parts of the system, involving interacting travelling-wave flutter and static-divergence modes that are convectively stable; alteration of the mean flow by oscillations makes the onset of this primary instability subcritical. We also show how distinct mechanisms of energy transfer differentiate the primary global mode from other modes of oscillatory instability. (C) 2009 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available