4.5 Article

MHD natural convection flow and heat transfer in a laterally heated partitioned enclosure

Journal

EUROPEAN JOURNAL OF MECHANICS B-FLUIDS
Volume 28, Issue 6, Pages 744-752

Publisher

ELSEVIER
DOI: 10.1016/j.euromechflu.2009.07.001

Keywords

Natural convection; MHD; PDQ; Enclosure; Partition

Ask authors/readers for more resources

This study looks at MHD natural convection flow and heat transfer in a laterally heated enclosure with an off-centred partition. Governing equations in the form of vorticity-stream function formulation are solved using the polynomial differential quadrature (PDQ) method. Numerical results are obtained for various values of the partition location, Rayleigh, Prandtl and Hartmann numbers. The results indicate that magnetic field significantly suppresses flow, and thus heat transfer, especially for high Rayleigh number values. The results also show that the x-directional magnetic field is more effective in damping convection than the y-directional magnetic field, and the average heat transfer rate decreases with an increase in the distance of the partition from the hot wall. The average heat transfer rate decreases up to 80% if the partition is placed at the midpoint and an x-directional magnetic field is applied. The results also show that flow and heat transfer have little dependence on the Prandtl number. (C) 2009 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available