4.5 Article

Conformational Changes and Phase Behaviour in the Protic Ionic Liquid 1-Ethylimidazolium Bis(trifluoromethylsulfonyl)imide in the Bulk and Nano-Confined State

Journal

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
Volume -, Issue 7, Pages 1300-1308

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ejic.201402496

Keywords

Ionic liquids; Protic ionic liquids; Ionogels; Phase transitions; Conformation analysis; Raman spectroscopy

Funding

  1. Swedish Foundation for Strategic Research (SSF) [ICA10-0074]
  2. Areas of Advance Energy and Materials Science
  3. Swedish Foundation for Strategic Research (SSF) [ICA10-0074] Funding Source: Swedish Foundation for Strategic Research (SSF)

Ask authors/readers for more resources

We report a Raman spectroscopic study of conformational changes to the TFSI anion in the protic ionic liquid 1-ethylimidazolium bis(trifluoromethylsulfonyl)imide, [C(2)HIm][TFSI], in its bulk and nano-confined state. We show that the TFSI anion is found as a mixture of cis and trans conformations at room temperature and in the liquid state, whereas this equilibrium shifts towards an increased cis population upon confinement in silica. In addition, the strong Raman signature at ca. 743 cm(-1) assigned to TFSI is found at systematically higher frequencies in the confined state. These findings suggest a higher packing efficiency, or density, for the ionic liquid at the silica surface. Moreover, the enthalpy of conformational change is only marginally affected upon confinement (4.32 +/- 1.30 vs. 5.27 +/- 1.09 kJmol(-1)), and the entropy is found to be a few Jmol(-1)K(-1) higher in the confined state. Raman spectra recorded upon heating from very low temperatures show that the phase behaviour of the ionic liquid is also affected by confinement, with crystallization upon cooling being frustrated in favour of an amorphous glassy phase. To summarize, our results indicate that the interaction established in the ionogels between the silica surface and the protic ionic liquid [C(2)HIm][TFSI] favours local structural disorder, in conceptual agreement with the slightly higher experimentally estimated entropy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available