4.5 Review

Homogeneous versus Heterogeneous Catalysts in Water Oxidation

Journal

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
Volume -, Issue 4, Pages 645-659

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ejic.201300684

Keywords

Artificial photosynthesis; Oxidation; Heterogeneous catalysis; Homogeneous catalysis; Water oxidation

Funding

  1. Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) [20108010, 24350069]
  2. Korean National Research Foundation of Korea / Ministry of Education, Science and Technology (NRF/MEST) through WCU program [R31-2008-000-10010-0]
  3. Korean National Research Foundation of Korea / Ministry of Education, Science and Technology (NRF/MEST) through GRL program [2010-00353]
  4. Japan Society for the Promotion of Science (JSPS)

Ask authors/readers for more resources

Recent developments in thermal and photochemical water oxidation by using homogeneous and heterogeneous catalysts is described together with the conversion of the homogeneous catalysts into heterogeneous catalysts during the course of water oxidation. The use of homogeneous catalysts is advantageous in the elucidation of detailed catalytic mechanisms including the detection of active intermediates for water oxidation. In contrast, heterogeneous catalysts are advantageous for practical applications, because of their high catalytic activity and the ease with which they can be separated by filtration. However, it is quite difficult to identify the active intermediates on the surfaces of heterogeneous catalysts, and therefore, the heterogeneous catalytic mechanism of water oxidation has not been clarified. Although investigations on homogeneous and heterogeneous catalysts for water oxidation have been performed rather independently, the link between homogeneous and heterogeneous catalysts is becoming more important for the development of efficient WOCs. This microreview focuses on factors to determine if the actual catalysts for water oxidation are homogeneous or heterogeneous depending on the conditions under which the catalysts are used. Ligand oxidation of homogeneous catalysts sometimes results in dissociation of the ligands to form nanoparticles, which act as much more efficient catalysts for water oxidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available